Mostrando postagens com marcador agua. Mostrar todas as postagens
Mostrando postagens com marcador agua. Mostrar todas as postagens

sábado, 11 de fevereiro de 2017

Estudantes brasileiros criam sistema que descontamina água usando sementes de moringa

Fonte: site ciclo vivo

A dupla de estudantes, que tem 15 e 18 anos, está entre os finalistas do Google Science Fair.


Estudantes brasileiros criam sistema que descontamina água usando sementes de moringa
A Moringa oleífera é um planta local, com poder para filtrar água. | Foto:https://pt.wikipedia.org/wiki/Ac%C3%A1cia-branca#/media/File:Moringa_flower_5.jpg
O Prêmio Impacto na Comunidade, promovido pela Google Science Fair – competição online e global de ciência e tecnologia voltada a jovens entre 13 e 18 anos – acaba de divulgar seus projetos finalistas.  São cinco regiões participantes: África e Oriente Médio, Pacífico Asiático, Europa, América Latina e América do Norte. Entre os cinco estudos finalistas da América Latina está o projeto desenvolvido por estudantes brasileiros do Sistema Ari de Sá, em Fortaleza, Ceará.
João Gabriel Stefani Antunes, de 15 anos, cursa a 1ª série do Ensino Médio, além de curso preparatório para o vestibular do Instituto Tecnológico de Aeronáutica (ITA), já Letícia Pereira de Souza, de 18 anos, concluiu os estudos escolares no Colégio Ari de Sá em 2015 e hoje cursa a Universidade de Stanford, nos Estados Unidos. Juntos eles pesquisaram sobre o uso da semente da Moringa oleífera – uma planta local – na filtração de águas contaminadas com o intuito de encontrar uma alternativa acessível para a recuperação da água poluída por produtos químicos, situação bastante comum em comunidades brasileiras.
No projeto intitulado “Semente Mágica – Transformando água contaminada em água potável”, João Gabriel e Letícia chegaram à conclusão de que a semente de Moringa pode descontaminar a água num processo de filtragem biodegradável e, ainda, contribuir com o controle de doenças causadas por saneamento básico precário a partir de uma técnica de baixo custo.
Os vencedores regionais do concurso receberão um auxílio de mil dólares e a oportunidade de passar um ano na monitoria de uma organização parceira da Google Science Fair. Além disso, cada ganhador será convidado para o evento Finalistas Globais, que acontecerá em setembro, na Califórnia (EUA).

quinta-feira, 1 de setembro de 2016

IMPORTÂNCIA DAS ÁRVORES PARA TER ÁGUA DE QUALIDADE.

Pesquisadores explicam a importância das árvores para ter água de qualidade

Bacias hidrográficas recobertas por vegetação florestal fornecem água de qualidade durante o ano todo.
22 de agosto de 2016 • Atualizado às 18 : 08

A floresta ainda contribui para o equilíbrio térmico da água, reduzindo os extremos de temperatura e mantendo a oxigenação do meio aquático. | Foto: Paulo Pinto/Fotos Públicas

Trabalhos desenvolvidos pelo Instituto Florestal (IF) comprovam que a presença de cobertura florestal em bacias hidrográficas promove a regularização do regime de rios e a melhora na qualidade da água. Os pesquisadores científicos da Seção de Engenharia Florestal, do IF, Valdir de Cicco, Francisco Arcova e Maurício Ranzini, embasaram suas teses de doutorado em pesquisas sobre a relação entre a floresta e a água, elucidando dúvidas e provando com números as suas proposições.
“As bacias hidrográficas recobertas por vegetação florestal são as que oferecem água com boa distribuição ao longo do ano, e de melhor qualidade”, enfatiza Arcova, engenheiro florestal, doutor em Geografia Física, pela Universidade de São Paulo, no IF desde 1985. Segundo ele, parte da água da chuva é retida pelas copas das árvores, evaporando em seguida em um processo denominado interceptação. A taxa de evaporação varia com a espécie, idade, densidade e estrutura da floresta, além das condições climáticas de cada região.
“Em florestas tropicais, a interceptação varia de 4,5% a 24% da precipitação, embora tenham sido registrados valores superiores a 30%”, explica. Os pesquisadores ainda dizem que as pesquisas realizadas nos laboratórios em Cunha, no parque Estadual da Serra do Mar, estimam o valor de  18% de interceptação. O restante da água alcança o solo florestal por meio de gotejamento de folhas e ramos ou escoando pelo tronco de árvores. No solo, a água infiltra-se ou é armazenada em depressões, não ocorrendo o escoamento superficial para as partes mais baixas do terreno, como aconteceria em uma área desprovida de floresta.
“O piso florestal é formado por uma camada de folhas, galhos e outros restos vegetais, que lhe proporciona grande rugosidade, impedindo o escorrimento superficial da água para as partes mais baixas do terreno, favorecendo a infiltração. Também a matéria orgânica decomposta é incorporada ao solo, proporcionando a ele excelente porosidade e, consequentemente, elevada capacidade de infiltração.”

Ilustração: Maurício Ranzini
Uma parcela da água infiltrada contribui para a formação de um rio por meio do escoamento subsuperficial, e outra, é absorvida pelas raízes e volta para a atmosfera pela transpiração das plantas. “A interceptação e a transpiração, ou a evapotranspiração, fazem a água da chuva voltar para a atmosfera não contribuindo para aumentar a vazão de um rio.”
Em florestas tropicais, a evapotranspiração varia de 50% a 78% da precipitação anual. Na pesquisa realizada em Cunha, esse número é de aproximadamente 30%. Os pesquisadores explicam que o remanescente da água infiltrada movimenta-se em profundidade e é armazenado nas camadas internas do solo e na região das rochas, alimentando os cursos de água pelo escoamento de base, isto é, do subsolo onde se localizam os lençóis freáticos.
A relação entre árvores e água varia de acordo com o tipo de floresta
Embora os processos que determinam os fluxos de água sejam semelhantes para as diferentes formações florestais, a magnitude desses processos, que depende das características da floresta, da bacia hidrográfica e do clima, influencia a relação floresta-produção de água (escoamento total do rio). Em florestas tropicais, a produção hídrica nas microbacias varia de 22% a 50% da precipitação. “Em Cunha, onde a evapotranspiração anual da Mata Atlântica é da ordem de apenas 30%, a produção de água pela microbacia é de notáveis 70% da precipitação”, afirma Francisco.

Esse mecanismo, em que a água percola o solo e alimenta gradualmente o lençol freático, possibilita que um rio tenha vazão regular ao longo do ano, inclusive nos períodos de estiagem. Nas microbacias recobertas com mata atlântica em Cunha, o escoamento de base é responsável por cerca de 80% de toda a água escoada pelo rio, fato que proporciona a elas um regime sustentável de produção hídrica ao longo de todo o ano.
Consequências da falta de vegetação
Ao contrário, em uma bacia sem a proteção florestal, a infiltração da água da chuva no solo é menor para alimentar os lençóis freáticos. O escoamento superficial torna-se intenso fazendo com que a água da chuva atinja rapidamente a calha do rio, provocando inundações. E, nos períodos de estiagem, o corpo-d’água vai minguando, podendo até secar.
Um outro fator drástico é que, enquanto nas bacias florestadas, a erosão do solo ocorre a taxas naturais, pois o material orgânico depositado no piso impedem o impacto direto das gotas de chuva na superfície do solo, nas áreas desprovidas de vegetação há um intenso processo de carreamento de material para a calha do rio aumentando a turbidez e o assoreamento dos rios.
Segundo Maurício, na microbacia recoberta com Mata Atlântica em Cunha, a perda de solo no rio é da ordem de 162 kg/hectare/ano. “Esse valor é muito inferior à perda de solo registrada para o estado de São Paulo, que varia de 6,6 a 41,5 t/hectare/ano, dependendo da cultura agrícola, algo como 12 toneladas num campo de milho, 12,4 toneladas numa área de cana-de-açúcar, chegando a até 38,1 toneladas numa plantação de feijão”, informa em tom de alerta.
A floresta representa muitos outros benefícios para os sistemas hídricos. Contribui, por exemplo, para o equilíbrio térmico da água, reduzindo os extremos de temperatura e mantendo a oxigenação do meio aquático. Promove, ainda, a absorção de nutrientes pelas árvores, arbustos e plantas herbáceas evitando a lixiviação excessiva dos sais minerais do solo para o rio.
Fonte : CicloVivo

quinta-feira, 8 de outubro de 2015

Porque os solos encharcados prejudicam o crescimento das frutíferas?

Devido ao fenômeno El Nino, estamos tendo um inverno e primavera chuvosa no RS. O que ocasiona o aumento do lençol freático prejudicando o crescimento dos vegetais, principalmente as mudas de frutíferas, pois falta oxigênio nas raízes devido a ocupação dos poros por água.


 O QUE É LENÇOL FREÁTICO? 

De toda a água que cai numa chuva, uma parte infiltra no terreno e o resto escoa pela superfície. A parte que corre pela superfície vai formar a enxurrada e a parte que infiltra vai formar o lençol freático.

A água que infiltra não fica parada dentro do terreno. Ela escoa, flui, formando uma rede de percolação até encontrar um barranco ou a beira de um rio onde a água aflora (sai) na forma de mina, também conhecida como bica. 
A análise da crosta terrestre, em relação à água da chuva que se infiltra permite distinguir duas zonas: saturada e não saturada.














A zona não saturada, também denominada zona de aeração, ou zona de infiltração, possui água e ar que preenchem poros e fissuras das rochas. Por baixo encontra-se a zona saturada, que constitui o aquífero, e onde todos os poros e fissuras das rochas estão preenchidos com água. A zona não saturada situa-se entre a superfície do solo e o topo da zona saturada.
Na zona não saturada, ou edáfica (que significa solo), a água pode comportar-se de forma gravitativa (ou seja, escoando verticalmente no sub-solo após infiltração na sequência da precipitação); pelicular (quando a água adere-se às partículas do solo por força da absorvição); e capilar (quando a água preenche parcialmente os poros da rocha através de forças capilares, podendo ainda ser distinguida a água capilar isolada da água capilar contínua). Neste último caso a água chega a ter um comportamento de deslocação vertical ascendente a partir da zona saturada, que é tanto mais importante quanto mais finos forem os poros ou fissuras da rocha.
  dc161.4shared.com